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It has been established that a crack has an important effect on the dynamic behavior of a
structure. This effect depends mainly on the 10cationanddepthofthecrack.Toidentifythelocation
and depth of a crack in a structure, a method is presented in this paper which uses neuro
fuzzy-evolutionary technique, that is, Adaptive-Network-based Fuzzy Inference System
(ANFIS) solved via hybrid learning algorithm (the back-propagation gradient descent and the
least-squares method) and Continuous Evolutionary Algorithms (CEAs) solving single objec
tive optimization problems with a continuous function and continuous search space efficiently
are unified. With this ANFIS and CEAs, it is possible to formulate the inverse problem. ANFIS
is used to obtain the inputtthe location and depth of a crack) - outpurlthe structural Eigen
frequencies) relation of the structural system. CEAs are used to identify the crack location and
depth by minimizing the difference from the measured frequencies. We have tried this new idea
on beam structures and the results are promising.
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1. Introduction

Techniques to detect cracks and defects hidden
in structure and to evaluate their residual life time
are very important to assure the structural integ
rity of operating plants and structures. Many
researchers have investigated the potential of sys
tem identification to determine the properties of a
structure. A state of damage could be detected by
a reduction in stiffness. A crack, which occurs in
a structural element, causes some local variations
in its stiffness which affects the dynamics of the
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whole structure to considerable degree. An analy
sis of the changes is tried to identify the crack.
Most of the studies on crack identification prob
lem have adopted the modal parameter or the
dynamic response to identify the global stiffness
and mass matrices of a structure.

A crack in a structure introduces a local flexi
bility, which is a function of the crack depth. This
flexibility changes the stiffness and the dynamic
behavior of the structure. Chondros and Dimaro
gonas (1979, 1980) considered the crack as a
local elasticity, which effects the elasticity of the
whole cracked structure under consideration and
related the crack depth with the frequency de-'
crease. Gounaris and Dimarogonas (1988) have
constructed a special cracked beam finite element
and Papadopoulos and Dimarogonas (1992)
used a 6 X6 compliance matrix, including off
diagonal terms, to simulate a cracked shaft and to
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study its dynamic behavior.
A number of papers deal with the problem of

crack location and size identification in order to
propose new, efficient and more precise methods.
Inagai et ai. (1981) used a procedure with eigen
frequency measurements to find the crack size and
location. Leung (1992) and Anifantis et al. (1987)
proposed crack identification methods through
measurements of the dynamic behavior in bend
ing. Dimarogonas and Massouros (1981) inves
tigated the dynamic behavior of a circumferen
tially cracked shaft in torsion and proposed the
nomographs for finding the crack depth and lo
cation. Nikolakopoulos et al, (1997) presented
the dependency of the structural eigenfrequencies
on crack depth and location in contour graph
form. To identify the location and depth of a
crack, they determined the intersection points of
the superposed contours that correspond to the
measured eigenfrequency variations caused by the
crack presence. However, the intersecting points
of the superposed contours are not only difficult
to find but also incorrect to evaluate since the
procedure mainly depends on men's eye.

The use of neural networks in detecting the
damage has been developed for several years,
because of their ability to cope with the analysis
of the structural damage without the necessity for
intensive computation. Neural networks are ex
pected to be a potential approach to detect the
damage of the structure (Wu et. al., 1992; Yos
himura and Yagawa, 1993; Tsou and Shen, 1994;
Shi et. al., 1999). In these researches, the proposed
methods are mostly solving the inverse problem of
the identification of the structural damage, that is,
mapping problem from vibration characteristics
to the structural parameters using the neural net
work. Because of such a mapping problem, they
used a variety of input-output relation, for exam
ple, the input is the FFT amplitude of a given
range and the output is the structural parameters
or the input is the structural eigenfrequencies and
modal vectors and the output is the structural
parameters. However, it is very expensive to use/
calculate these inputs (the 200 input nodes for the
FFT amplitude of a given range or many accelero
meters for obtaining mode-shape). Also, an ap-

proximate estimate is often not good because
inverse function is a subset of original input, in
fact such a subset could even be empty, so that the
usual concept of function breaks down. To iden
tify the location and depth of a crack in a struc
ture with efficient inverse analysis approach and
with only eigenfrequency information, hybrid
neuro-genetic technique was developed by au
thors (Suh et. al., 2000). However, it needs to be
improved since it is very difficult to obtain the
learned network due to the nature of neural net
work (Jang, 1993; lang and Sun, 1995).

To identify the location and depth of a crack in
a structure with only eigenfrequency information
efficiently, a method is presented in this paper
which uses neuro-fuzzy-evolutionary technique.
Adaptive-Network-based Fuzzy Inference Sys
tem (ANFIS) (Jang, 1993; lang and Sun, 1995)
solved via hybrid learning algorithm (the back
propagation gradient descent and the least
squares method) are used to obtain the input (the
location and depth of a crack) -output (the struc
tural eigenfrequencies) relation of the structural
system. With this ANFIS, Continuous Evolution
ary Algorithms (CEAs) (Furukawa and Yagawa,
1997), which are efficient in real parameter iden
tification problem, are used to identify the crack
location and depth minimizing the difference
from the measured frequencies.

2. Inverse Analysis Method

The inverse analysis is generally defined as
identifying the parameter set x*EX when mea
sured, or reference data y*E Y and direct
mapping ift : X -+ Yare known. Problems with
the nonlinear direct mapping ift are termed non
linear inverse problems. In practice, deterministic
models describe reality only in an idealized sense,
and thus we may express the input-output rela
tion as follows:

y=ift(x) +c

where c= C1+C2, and C1 and C2 are errors in the
measurement of y and those in the model equa
tions, respectively.

In the analysis of field quantities shown in
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Fig. 1 Problems of field quantities
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Fig. 1, the model equations in general take the
form:

Fig. 2 A beam finite element with extension and
bending

where L, k, ,p, q are the differential operator,
material property, field quantity and a source
term, respectively.

Inverse problems for Eq. (2) can be classified
in terms of the parameter set to be identified: (a)
domain Q, (b) governing equations, (c) boun
dary conditions, (d) force or source Ii applying in
Q, (e) material properties k defined in Q and
involved in the governing equations (Furukawa
and Yagawa, 1997). In these problems, the input
and output vectors reside in the continuous space.
There are two main strategies for solving inverse
problems. One is to solve a set of equations and
the other is to directly find the minimum or
maximum of a certain function. However, the
former is worth noting the following difficulty:
the inverse problem can always be defined as an
abstract theoretical concept. In general, inverse
function is a subset of original input, in fact such
a subset could even be' empty, so that the usual
concept of "function" as a "one-to-one" injection
breaks down. Generally, it is reasonable to solve
the latter. Out of them, minimizing a least square
criterion has been most widely used for identific
ation.

In this approach, optimization techniques are
used to find the input by adjusting them until the
measured, or reference data match the corre
sponding data computed from parameter set in
the least square fashion, i.e.

minimize f (x) (3a)

with the cost functional

(4)

(5)

3. Structure Analysis

In the finite element model of a damaged struc
ture, the effect of a crack on the behavior of the
structure can be simulated through- the introduct
ion of the transfer matrices which are: method for
finding the Stiffness matrix. A planar frame struc
ture can be modeled using two-dimensional 6eam
elements having 3 d.o.f. (8"" 8y , 8z ) per node,
that is, with extension and bending, in Fig; 2.

The corresponding stiffness and consistent mass
local matrices (Pilkey and Wunderlich, 1994) are

PL2 0 0 -PL2 0 0
o 12 6L 0 -12 6L

[ J
u; 0 6L 4V 0 -6L 2V

](. =7 ':"'PL2 0 0 PL2 0 0

o -12 -6L li 12 -6L
o 6L 2V 0 -6L 4L2

140 0 0 70 0 0
o 156 22L 0 54 -13L'

[ J
- pAL 0 22L 4V 0 I3L -3V

M. - 420 70 0 0 140 0 0

o 54 13L 0 156 -22L
o -I3L -3L2 0 -22L 4V

based optimization techniques have been in
tensively usedto solve this optimization problem.
These techniques can, however, fail if errors con
tained in the model equations and in the measure
ment cause the objective function to be complex.
In such cases, -the solution may result in a local
minimum, unless some' regularization method is
incorporated. The present study uses genetic
algorithm, which is significantly promising for
complex optimization.

(2)L(k) ,p=q

where ki is a weighting factor. Various calculus- where P=A/lzz, L is the length of element e and
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L.

Fig. 3 A cracked beam finite element

{z, }={ s; s; 8Zi FXi FYi MZiY (7a)

{ZL }={ 8xL 8YL 8zL FxL FYL MzL Y (7b)

{ZR }={ 8xR 8YR 8zR FxR FYR MzL Y (7c)

{z, }={ 8Xi 8Yi 8zj FXi FYi u; Y (7d)

A beam finite element of length L e, containig a

crack of depth a at distance Lle from its left end,
is depicted in Fig. 3.

The crack introduces a local compliance in the

structure. The state vectors at positions i, CL, CR,
are J are

1~

( lua-c)

C33

C22

Cll

a.6

o.g ..-.••••.•••••••••••..••.•••••••.••••

O.B ••••••••••••••••••••••••••••••••••!
0.7 ..

where subscripts I, 2 and 3 correspond to tension,

shear and bending, respectively. Terms ClS and CSl,

responsible for the coupling of tension and bend
ing (Gounaris and Dimarogonas, 1988), are not

considered here, whereas the rest are known as

follows (Papadopoulos and Dimarogonas, 1988):

2(1-1/2) (/h

Eb
2Jr (I - 1/2)a>s

Eb
72 (1- 1/2) 4'12

Ebh2

Fig. 4 cD. vs a/h for single edge notch specimen
under pure tension, bending and shear

[Tc] and is the point transfer matrix due to the

crack. Matrix [TcJ, which relates the state vectors
on the left and right of the crack, is

1 0 0 Cll 0 ClS

0 I 0 0 C22 0

[Tc]=
0 0 I CSl 0 C33

(9)
0 0 0 -I 0 0

0 0 0 0 -I 0

0 0 0 0 0 -1

"a 0.5

section

~J
b

cc
'1 r --.A i)

a

--oA.
~.

0 0
-L

0 0AE

0 L 0 V V
6Elzz - 6Elzz

[Te]= 0 0 0 L 2 L (6)
2Elzz Elzz

0 0 0 -I 0 0
0 0 0 0 -I 0
0 0 0 0 L -I

L is the cross section area. E and p are the

modulus of elasticity and mass density, respec

tively, and lzz is the second moment of inertia
about the local z-axis,

From the Euler-Bernoulli theory for the above

mentioned degrees of freedom, the transfer matrix

[21] which transfers the state variables (displace

ment, force) from one node to the other node, is

where [Tl] and [72] are the transfer matrices of

the subelements CL- i and CR - j, respectively

Ifno force is acting between nodes i and j, then

it can be derived from simple beam theory, where

the four state vectors are related as follows:

{ zd= [Tl]{ z.}
{zR}=[Tc]{zd
{Zi}= [72]{ ZR }

(Sa)

(8b)

(Sc)

where 1/ is Poisson's ratio, k is a constant which
for rectangular cross sections is known to be 1.5

and a>i are functions of the nondimensional crack

depth a/ h (Papadopoulos and Dimarogonas,

1988). These functions, which are presented in
Fig. 4, are integrals of the empirical formulas

used by Tada (1973) for computation of stress

intensity factors K1 in single edge notch spec

imens under pure tension, bending and shear.
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Fig. 5 A recurrent & feed-forward adaptive
network in layered representation
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layer 1
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ence System (ANFIS) is introduced, an adaptive
network has to be defined. An adaptive network,
which is a superset of all kinds of neural network
paradigms with supervised learning capability, is
a network structure whose overall input-output
behavior is determined by the values of a collec
tion of modifiable parameters. More specifically,
the configuration of an adaptive network is com
posed of a set of nodes connected through direc
ted links, where each node is a process unit that
performs a static node function on its incoming
signals to generate a single node output and each
link specifies the direction of signal flow from one
node to another. Usually a node function is a
parameterized function with modifiable para
meters. By changing these parameters, we are
actually changing the node function as well as the
overall behavior of the adaptive network. The
learning rule specifies how these parameters
should be changed to minimize the difference
from the reference. The basic learning rule of
adaptive networks is based the gradient descent
method which is notorious for its slowness and
tendency to become trapped in local minima.
Figure 5 shows typical feed-forward and recur
rent adaptive networks with two inputs and two
outputs.

A class of adaptive networks that act as a
fundamental framework for adaptive fuzzy infer-

4. Neuro-Fuzzy-Evolutionary
Technique for Crack Identification

[12C]=[12HTcHT1]=[1:tJ
(12)

where [Ai] are 3 X 3 submatrices. Eq. (12) leads
to the stiffness matrix of the crack element:

4.1 Adaptive-network-based fuzzy
inference system

Before Adaptive-Network-based Fuzzy Infer-

From Eqs. (8a) - (Be) the following is obtained:

{ Zj } = [T/] { z.} (11)

The transfer matrix [TeC] of the cracked ele
ment is written in the form

(-a}[M]+[K]){x}={O} (14)

The equation of motion in matrix form is
known to be

The cracked structure in this study is discretiz
ed into a set of elements and the crack is assumed
to be located within one of the elements. An
ANFIS architecture for the cracked structure is
obtained to approximate the response of the
structure from the data set prepared through the
finite element analysis for various crack sizes and
locations. For estimating the location and size of
a crack CEAs are utilized, based on the ANFIS
architecture. The ANFIS and CEAs are for the so
called off-line and on-line function, respectively.
The off-line performance is to construct an
ANFIS architecture using the input-output pairs
including the location and depth of a crack as
input and the structural eigenfrequencies as out
put. The on-line performance is to identify the
crack location and depth using CEAs. Neuro
Fuzzy-Evolutionary technique as well as ANFIS
and CEAs will be introduced in the following
sections, focused on our application.

where (J) is eigenfrequency, x is a displacement
vector. The above analysis serves to identify the
location and depth of a crack in a frame structure,
just by measuring the eigenfrequency variations.
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(Is) Layer 4: Every node in this layer is an adaptive

node with a node function

where x (or y) is the input to the node and Ai
(or Bi- Z) is a fuzzy set associated with this node.

In other words, outputs of this layer are the

membership values of the premise part. Here the

membership functions for Ai and B, can be any

appropriate parameterized membership functions.

For example, Ai can be characterized by the

generalized bell function;

(18)

(16)

Wi .+ ,z=I,2
WI Wz

OS.i=Wi

where {ai, hi, c.} is the parameter set.
Parameters in this layer are referred to as premise

parameters.

Layer 2: Every node in this layer is a fixed node

labeled II, which multiplies the incoming signals

and output the product. For instance,

OZ.i=Wi=!J.A,(X) X!J.B,(X), i=l. 2 (17)

Each node output represents the firing strength

of a rule.
Layer 3: Every node in this layer is a fixed node

labeled N. The i-th node calculates the ratio of

the i-th rule's normalized firing strength to the

sum of all rules' firing strengths:

Figure 6 (a) illustrates the reasoning mechanism

for this Sugeno model. The corresponding equiv

alent ANFIS architecture is as shown in Fig. 6

(b), where nodes of the same layer have similar

functions, as described below. Here we denote the

output node i in layer I as Oi.;
Layer 1: Every node i in this layer is an

adaptive node with a node output defined by

01.i=!J.A,(X) , for i=l, 2, or

01.i=!J.B,_.(X) , for i=3, 4

ence systems is referred to as "ANFIS" (lang,

1993), which stands for Adaptive-Network

based Fuzzy Inference System, or semantically

equivalently, Adaptive Neuro-Fuzzy Inference

System. The ANFIS architecture and its learning

algorithm, which is used in this paper, for a first

order Sugeno fuzzy model will be described pri

marily.

For describing ANFIS architecture in the first

place, we assume the fuzzy inference system under
consideration has two inputs x, Y and one output

Z. For a first-order Sugeno fuzzy model (Sugeno

and Kang, 1998), a typical rule set with two fuzzy
if-then rules can be expressed as

Rule I: If x is Al and y is Bs, then

II=PIX+q1Y+ ri,

Rule 2: If x is A z and y is Bz, then

Iz =Pzx +qzY+ rz

(b)

Fig. 6 (a) A two-input first-order Sugeno fuzzy
model with two rules, (b) equivalent

~: .-.::"" } f=

~ pz"x+qz*y+12

X Y

x

y

layer1

~

(a)
layer4

~ layer5

xy l
Uw.*f.

04.i= Wdi=Wi(P;X+ a.» + ri) (19)

where Wi is the output of layer 3 and { Pi, qi, ri}
is the parameter set. Parameters in this layer will

be referred to as consequent parameters.
Layer 5: The single node in this layer is a fixed

node labeled 2::, which computes the overall out

put a the summation of all incoming signals:

2::Wdi
05.1 = overall output=4:iVd=~ (20)

l ~Wi
i

Thus an adaptive network that has exactly the

same function as a Sugeno fuzzy model has been

constructed. Note that the structure of this

adaptive network is not unique; one can easily

combine layers 3 and 4 to obtain an equivalent

network with only four layers. Figure 7 illustrates

an ANFIS of this type.
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x

y
f

k=O;

InitializeP(k)

do

Fig. 7 Another ANFIS architecture for the
two-input two-rule Sugeno fuzzy model

tLv:! ·x :2tH
tLx\ ~B

• Y A1 A2 X

Fig. 8 Partition of the input space into four fuzzy
regions

Figure 8 illustrates how the 2-D input space is
partitioned into four overlapping fuzzy regions,
each of which is governed by fuzzy if-then rules.
In other words, the premise part of a rule defines
a fuzzy region, while the consequent part specifies
the output within this region.

From the ANFIS architecture shown in Fig. 6
(b), we observe that the ANFIS architecture
consists of two trainable parameter sets:

1). The antecedent membership function para
meter {ai, b.; c, }.

2) The polynomial parameters {Pi, a.. ri},
also called the consequent parameters.

The ANFIS training paradigm uses a gradient
descent algorithm to optimize the antecedent
parameters and a least squares algorithm to solve
for the consequent parameters. Because ituses two
very different algorithms to reduce the error, the
training rule is called a hybrid. The consequent
parameters are updated first using a least squares
algorithm when the values of the premise parame
ters are fixed and the antecedent parameters are
then updated by back-propagating the errors that
still exist. Accordingly, the hybrid approach con
verges much faster since it reduces the dimension
of the search space of the original back-propaga
tion method.

4.2 Continuous evolutionary algorithms
Evolutionary algorithms (EAs) are probabili

.stic optimization algorithm based on the model of

Evaluate P(k);

Select P(k);

Recombine P(k);

Mutate P(k);

k=k+l;

while terminal condition is not satisfied

Fig. 9 Fundamental structure of evolutionary
algorithms

natural evolution and the algorithm has clearly
demonstrated its capability to create good ap
proximate solutions in complex optimization pro
blems. Fig. 9 shows the fundamental structure of
evolutionary algorithms.

Continuous evolutionary algorithms (CEAs)
(Furukawa and Yagawa, 1997) are one of EAs,
which is specifically formulated for the optimiza
tion with continuous search space. The repro
ductive operations of CEAs are intended to be
similar to those of genetic algorithms (GAs) such
that it can take the advantage of probabilistic
features in GAs. The major difference of CEAs
from GAs is that a search point itself, i.e. a real
continuous vector, gives the representation of the
individual. First, a population of individuals,
each represented by a continuous vector, is initi
ally (generation k=O) generated at random, i.e.,

P"={ x/', ''', xl'}E (Rn)A (21)

where R" represents the number of real variables
and ,.\ is the number of parental individuals in the
problem. Each vector thus represents a search
point, which corresponds to the phenomenolog
ical representation of individual, that is, the
phenotype.

The definition of the recombination and muta
tion becomes the probabilistic distribution of the
phenomenological measures accordingly. The
recombination operation is then defined as (Fu
rukawa and Yagawa, 1997; Shim et. al., 2000)

{
X ' a= (1- f.lak) Xa k +fJ.lxl
x',=u« k X ak +(1- fJ.l) xl (22)
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where Xa" and k," are parental individuals at
generation k and parameter f.l.l, ViE{ a, /3} may
be defined by the normal distribution with mean
o and standard deviation (J

4.3 Neuro-fuzzy-evolutionary technique for
crack identification

For the crack identification, it is known that
crack parameters such as the location and depth
of a crack can be determined from the measured

Optionally, ranking selection can be implemen
ted in this algorithm. These reproductive opera
tions form one generation of the evolutionary
process, which corresponds to one iteration in the
algorithm, and the iteration is repeated until a
given terminal criterion is satisfied.

[
Adaptive-network-based

_ Fuzzy Inference System

Dimensionless input-output Data
(Crack parameters. Eigenfrequencies)

eigenfrequencies of structure. This can be classi
fied as the inverse problem. In this study, neuro
fuzzy-evolutionary technique is adopted to iden
tify the crack parameters in a structure.

Overall procedure of this study is shown in Fig.
10. There are preparation phase and recognition
phase. In the preparation phase, the learning data
of various sets of dimensionless crack parameters
and the corresponding response of the structure,
which is the dimensionless eigenfrequency change
in this study, are prepared by the computational
structure analysis which is presented in sec. 3 of
this paper. The ANFIS architecture described in
subsection 4.1 is adopted to approximate the re
sponse of the cracked structure from the prepared
learning data.

In the recognition phase, the parameters which
identify the crack are estimated by CEAs descri
bed in subsection 4.2 using the ANFIS architect
ure obtained in the preparation phase. Using the
ANFIS architecture, crack identification problem
can be constructed in terms of optimization with
CEAs. The optimization problem to be formula
ted is defined as follows

Fig. 10 Crack identification procedure on neuro
fuzzy-evolutionary technique

Preparation Phase -------.....

Reco~tion Phase IElgadrequeac:lesI
Continuous ...A;;:-:;::===-.-=-

Evolutionary ~ 'r Fuzzy Inference1
Algorithms ~ System .

__~:;...c;_oaverge__.....\..I O1Ic:kpenmctersI
Crack Parameter

Identification

(23)

(24)

f.l.l=N(O, cf)

Ps (xl)

The standard deviation can adopt a self
adaptive strategy (variable with respect to k) or
be simply constant. The self-adaptive strategy
makes the convergence rate required for each
generation faster at the expense of the com
putation time and vice versa.

The mutation can also be achieved simply by
implementing

x" =rand (XmIn, xmaJ (23)

Note that the mutation may not be necessary
since it can allow individuals to alter largely with
small possibility, when the coefficient f.l.l is large.

The evaluation of the fitness can be conducted
with a linear scaling, where the fitness of each
individual is calculated as the worst individual of
the population subtracted from its objective func
tion value

(IJ (xl) =max{ f (x") Ix"E P"}- f (x") ,
ViE{ I,····, tI} (23)

as in GAs. (IJ (xl) ~O is thus satisfied by this
equation. Proportional selection, which is the
most popular selection operation in GAs, also is
directly used in CEAs as it requires (IJ (Xi") ~O.

The reproduction probabilities of individuals
Ps : X - [0, IJ are given by their relative fitness,

(IJ (xl)
A

2: (IJ (xl)
.i=1
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IOUtput data II Target data I

mJH
B

Fig. 12 Model of the cracked clamped-free beam

y

Fig. 13 Three ANFIS architecture for a two-input
first-order Sugeno fuzzy model with 15
rules, 42 rules and 90 rules, respectively

denote results for the uncracked and cracked
beams, respectively. The first three eigenfrequen
cies of the uncracked beam are obtained (fu_l=
117rad/s'/uJ'732rad/s'/uJ=2029rad/s) solv
ing Eq. (14) except the crack matrix. The patterns
which consist of 290 sets of data are used to train
three ANFIS architecture of Fig. 13. Through
some trials, rules iii Fig. 13 are concluded to be
the best for our application. In addtion, to update.
the antecedent parameters by back-progating the
errors, the adaptive learning rate is used. That is,
if the error decreases the learning rate is increased
by 1.1. Otherwise, the learning rate is decreased
by 0.9.

Root Mean Squared Error(RMSE) is empolyed

/

; a ,
x

;
/

~ L..
L

5. Numerical Simulation

Fig. 11 Flowchart of the neuro-fuzzy-evolutionary

technique

The clamped-free beam of Fig. 12 has a length
of L=3m~ rectangular cross section B X H =
0.2m X 0.2m and contains a crack of depth a at a
distance L 1'from the clamped end. The material
properties are E=2.07 X 101lNm-z, 11=0.3, and
p=7700kgm-3• The beam is discretized into 12
two-node finite elements. For the ANFIS archi
tecture, 10 sets of a crack depth a=O.Olm, 0.02m,
...• O.lm (step size=O.Olm) are introduced at the
29 different locations Ll=O.lm, 0.2m, .... 2.9m
(step size=O.lm). Totally 290 cases or patterns
(10 different crack depths and 29 different crack
locations) are solved for the first three eigen
frequencies. The nondimensional crack depth
a"= a/ H and crack location L 1*=LI!L as well
as the dimensionless eigenfrequency change Q i=

1- fc_JfU_i will be used. Subscripts u and c

where a", L 1*. is the dimensionless depth and
location of a crack, Wi is a weighting factor and
Q i is the dimensionless eigenfrequency which is
functions ofa* and Ls"; and Q i * is the dimen
sionless measured or reference eigenfrequency.
The general procedure is illustrated in Fig. 11.
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as a measuremenet of modeling performance. The

mathematical expression can be described as
follows:

Fig. 14 RMSE curves for three ANFlSs

m ~ ~ ~ ~ ~ ~ ~ ~

epoch numbo,

where e, denotes an error at pattern i and N is the

total number of pattern. Figure 14 shows the
RMSE curves for three ANFIS which indicate

most of the learning was done in the 50 epochs,

respectively. The final RMSE is 6.45e-3, 4.92e-2,

1.84e-2, respectively when the RMSE not of

dimensionless eigenfrequencies change but of

crack eigenfrequencies is calculated and total

RMSE is 5.5e-2.

The estimated crack eigenfrequencies from the

ANFIS architecture are compared to the target

values as shown in Fig. 15. In order to check the

ANFIS architecture, 9 sets of a crack depth a=
0.015m, 0.025m, "', 0.095m (step size=O.Olm)

are introduced at the 28 different locations L 1=

0.15m, 0.25m, "', 2.85m (step size=O.lm). Total

ly unlearning 252 cases or patterns (9 different

crack depths and 28 different crack locations) are

compared to the exact values as shown in Fig. 16
and then total RMSE is 3.2479. This result shows

that the ANFIS architecture is well learned.

(26)I N
2: (ei) 2

RMSE= _'_'=~l,---_
N
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Fig. 15 Comparison of the estimated eigenfrequencies from the ANFIS architecture to target values
(0: target value, * : estimated value)
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Fig. 16 Comparison of the unlearning eigenfrequencies from the ANFIS architecture to target values
(0: target value, * : estimated value)
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Table 1 Crack identification result: Clamped-free beam

Case (a)

Reference value Result value Relative Error(%)

a- (a) 0.1 (0.02) 0.099 (0.020) 1.0 (1.4)

L 1-(L1) 0.1 (0.30) 0.097(0.310) 3.0(3.0)

Q1(fc_1) 0.030(113.48) 0.031 (113.35) 3.3 (0.1 I)

Q2(fc 2) 0.024(714.46) 0.024(714.23) 1.3 (0.03)

Q3(fc_3) O.QlI (2007.56) 0.011 (2007.62) 0.3 (O.OI)

Case (b)

Reference value Result value Relative Error(%)

a-(a) 0.325 (0.065) 0.322 (0.064) 0.1 (0. I)

L1-(LI) 0.35 (1.05) 0.357 (1.071) 1.9 (1.9)

Q1(fc_I) 0.061 (109.83) 0.056 (110.45) 8.6(0.57)

Q2(fc_2) 0.049(696.24) 0.048(697.12) 2.5 (0.12)

Q3(fc_3) 0.025 (1910.72) 0.058 (1909.97) 5.8(0.04)
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Fig. 17 Generation history of Case (a) and Case (b)

50

Because the ANFIS architecture obtained above
can be adopted to approximate the response of the
cracked structure, the parameters which identify
the crack are estimated by CEAs. Using the
ANFIS architecture, crack identification problem
can be constructed from Eq. (25). Then CEAs for
this study is set-up: population size, N = 50;
standard deviation, <1=0.5; mutation rate, M =
0.02. Also, proportional selection method is adop
ted for the selection process.

The clamped-free beam of Fig. 12 is adopted as
an example problem, two cases are considered.
(a) A-crack of depth a of 0.02 m exists at L 1

of 0.3 m. The first three eigenfrequencies are

obtained computationally based on the theory
described in section 3: fC_l= I 13.48rad/s, fC_2=
714.46rad/s, fC_3=20007.56rad/s. (b) A crack
of depth of 0.065 exists at of 1.05. The first three
eigenfrequencies are obtained computationally
based on the theory described in section 3: fC_1 =
109.83rad/s, fcf;:.696.24rad/ s, fC_3= 1910.72
radls.

The neuro-fuzzy-evolutionary technique has
been applied to this example problem. Figure 17

illustrates convergence history of the objective
function for case (a) and case (b), respectively.
The searches meet the convergence after 19 and 22
iterations for case (a) and case (b), respectively.
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Table 2 Comparison of Neuro-Fuzzy-Evolutionary technique to Hybrid neuro-genetic technique

465

Neuro-Fuzzy-Evolutionary Hybrid Neuro-Genetic
technique technique

ANFIS Back-Prop. NN

Training Data 290 290

RMSE 0.055 5.26

Epoch Number 503 100,000

CEAs GAs

Case (a) Case (b) Case (a) Case (b)

Generation No. of
19 84 47

Optimal Sol.
22

The result of Table I shows that the location and
depth of a crack are estimated by the neuro-fuzzy

evolutionary technique within 3% error. Also, the

corresponding eigenfrequencies are very close to

the reference values within 0.6% error.

Table 2 lists the general performance of both
neuro-fuzzy-evolutionary technique and hybrid

neuro-genetic technique, which were measured by

using each method to predict 290 points immedi

ately following the training set and to identify
the location and depth of a crack for two cases.

The RMSE obtained through back-propagation

neural network is 5.26 which is much worse than

that of the ANFIS architecture. Also, CEAs
incorporating continuous representation of points

demonstrate its convergence faster than that of

GAs.

6. Conclusions

A methodology of neuro-fuzzy-evolutionary

technique for the crack identification from the

eigenfrequencies is proposed based on the fact

that a crack has an important effect on the

dynamic behavior of a structure. To estimate the
crack parameters adaptive-network-based fuzzy

inference system and continuous evolutionary

algorithm are combined into the proposed tech

nique. The ANFIS architecture is for the approx
imation of the eigenfrequencies as the functions of

the crack parameters and the CEAs is for finding

crack parameters which minimize the difference

from the measured eigenfrequencies.
The effectiveness of this technique is confirmed

by a example problem. The crack parameters of
the clamped-free beam problem are estimated

within 3% error. It can be concluded that good
agreements are obtained between the depth and

location of the estimated crack and that of the

reference one.
The neuro-fuzzy-evolutionary technique can

be generalized for general boundary condition

and structure to estimate the crack location and

depth provided that the reference data, or training
data to learn the ANFIS architecture are properly

prepared.
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Appendix

To give the readers a concrete idea of the
resulting fuzzy inference systems, it would be
better to show the change of membership func
tions (in Fig. 18) and to list the fuzzy if-then
rules explicitly. Here we list the final 15 fuzzy if
then rules of the first eigenfrequency in example
problem 1 which predicts the eigenfrequencies of
the clamped-free beam. Suppose that the input.
a" is assigned three linguistic values SMALL,
MEDIUM and LARGE and the input L * is
assigned five linguistic values VERY SHORT,
SHORT, HALF, LONG, VERY LONG, then the
fuzzy if-then rules after training can be expressed
as:
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Ifa' is SMALL and LI' is VERY SHORT, then QI=CI' X
Ifa' is SMALL and LI' is SHORT, then QI=cz' X
If a' is SMALL and It' is HALF, then QI=C3' X
If a' is SMALL and LI' is LONG, then QI=c.· X
Ifa' is SMALL and It' is VERY LONG, then Q1=cs' X
Ifa' is MEDIUM and L1' is VERY SHORT, then Q1=eo' X
Ifa' is MEDIUM and LI' is SHORT, then Q1= C7 ' X
Ifa' is MEDIUM and Lt' is HALF, then Q1=cs' X (27)
If a' is MEDIUM and Lt' is LONG, then QI = C9 ' X
If a' is MEDIUM and LI' is VERY LONG, then Q1=CIO' X
Ifa' is LARGE and LI' is VERY SHORT, then QI=Cll • X
If a' is LARGE and Lt' is SHORT, then Q1=Cll' X
If a' is LARGE and Lt' is HALF, then QI=CI3' X
If a' is LARGE and LI' is LONG, then Ql=CI4' X
Ifa' is LARGE and LI' is VERY LONG, then QI = C15 ' X

where X=[a· L 1• 1] and c, is the i-th row of
the following consequent parameter matrix C:

Fig. 18 Membership functions before & after

learning, respectively

C=

0.331 0.02865
-0.07464 0.01993
-0.06105 0.01158
-0.00138 0.006203

0.0006746 0.002138
0.485 -0. I 557
0.006172 -0.1128

-0.06677 -0.0697
0.0003775 -0.03413
0.0006231 -0.01119
0.9643 -0.4322
0.474 -0.2719
0.1262 -0.1275

-0.007641 -0.02121
-0.001608 0.003531

0.02193
0.01125
0.01138
0.01485
0.01747

-0.01448

0.09603
0.08847
0.04682
0.03176

-0.1825
0.02079
0.07911
0.04297
0.01758

(28)


